
N89-16336

Roger Racine
C.S. Draper Laboratory

555 Technology Sq.
Cambridge, MA 02139

(61 7) 258-2489

Abst rac t

There are many problems associated w i t h d i s t r i b u t i n g an Ada program
over a loose ly coupled communication network. Some o f these problems
invo lve the va r ious aspects o f the d i s t r i b u t e d rendezvous. The problems
addressed i n t h i s paper invo lve suppor t ing the "delay" statement i n a
s e l e c t i v e c a l l and suppor t ing the "else" c lause i n a s e l e c t i v e c a l l .
Most o f these d i f f i c u l t i e s a re compounded by the need f o r an e f f i c i e n t
communication system. The d i f f i c u l t i e s a re compounded even more by con-
s i d e r i n g the p o s s i b i l i t y o f hardware f a u l t s occu r r i ng w h i l e the program
i s running. With a hardware f a u l t t o l e r a n t computer system, i t i s pos-
s i b l e t o des ign a d i s t r i b u t i o n scheme and communication so f tware which
i s e f f i c i e n t and a1 lows Ada semantics t o be preserved. An Ada des ign
f o r t he communications sof tware o f one such system w i l l be presented,
i n c l u d i n g a d e s c r i p t i o n o f the serv ices prov ided i n the seven laye rs o f
an I n t e r n a t i o n a l Standards Organizat ion (ISO) Open System In te rconnec t
(OSI) model communications system. The system c a p a b i l i t i e s (hardware
and software) t h a t a l l o w t h i s communication system w i l l a l s o be
descr ibed.

Background

There a re many reasons f o r us ing d i s t r i b u t e d computer systems. Key
among these i s the a b i l i t y t o recover when a f a u l t occurs i n one o f t he
computing s i t e s . Other reasons inc lude increased throughput and sepa-
r a t e subsystem development by d i f f e r e n t con t rac to rs (or t h e a b i l i t y t o
buy o f f - t h e - s h e l f subsystems).

The Ada p r o g r a m i n g language has the concept o f p a r a l l e l i s m b u i l t i n
(i n the form o f tasks) . To expand t h i s concept t o i nc lude runn ing one
Ada program on m u l t i p l e computers, w i t h communication t a k i n g p lace over
some network, c rea tes a number o f problems. One must consider how t o
spec i f y the l o c a t i o n o f processes, t h e d i s t r i b u t e d e l a b o r a t i o n o f t h e
program, whether the va r ious so f tware engineers invo lved a re ab le t o
t e l l where va r ious components w i l l be located, what should happen i n t h e
case o f hardware f a u l t s , and how t o implement t h e va r ious communication
mechanisms a v a i l a b l e i n Ada.

E.2.1 .I

I n t h e i n t e r e s t o f space, t he focus of t h i s paper w i 1 1 be i n the
area o f t he d i s t r i b u t e d Ada rendezvous. I n a rendezvous, one task c a l l s
an "en t ry " i n another task. The f i r s t task then wa i t s f o r t he server
task t o "accept" t he c a l l . Conversely, i f the server task at tempts t o
accept the c a l l be fo re i t i s made, i t w i l l w a i t . When t h e c a l l e r and
server bo th have a r r i v e d , t h e rendezvous occurs, w i t h parameters passed
t o the en t r y , a b lock o f code executed, and any ou tpu t parameters passed
back t o the c a l l e r . The two tasks a re then f r e e t o execute aga in i n
para1 l e l .

That i s t he simblc rendezvous. Ada also prov ides s e l e c t i v e c a l l s
and s e l e c t i v e accepts, t imed c a l l s and timed accepts, and guarded
accepts.

A s e l e c t i v e c a l l i s a c a l l which must be accepted immediately. I f
any o the r task i s be ing served, o r t he server task i s anywhere i n i t s
execut ion except w a i t i n g a t the accept statement, t h e c a l l i s cancel led.
The language requ i res t h a t t he server task be checked t o determine if
the e n t r y i s ava i l ab le . I t i s necessary, there fore , for two messages t o
be sent over the network t o o b t a i n the in fo rmat ion . The f i r s t message
w i l l ask f o r t he rendezvous; t he second w i l l e i t h e r be a message say ing
the rendezvous could n o t be accepted o r e l s e the second w i l l c o n t a i n the
r e s u l t o f t he rendezvous.

A t imed c a l l i s one which must be accepted w i t h i n a g iven amount o f
t ime. The c a l l w i l l be cance l led i f i t i s no t accepted w i t h i n t h a t t ime.
The semantics o f a t imed c a l l a re d i f f e r e n t depending on t h e va lue o f
t he delay. I f the de lay i s zero or i s negat ive, the semantics o f a
s e l e c t i v e c a l l w i l l be fo l lowed. A t l e a s t two c o m u n i c a t i o n messages
must be sent over t h e network. However, i f the de lay i s p o s i t i v e , and
the rendezvous i s known, by t h e c a l l e r , no t t o be ab le t o occur w i t h i n
the de lay per iod, i t i s n o t necessary t o even at tempt t h e rendezvous.
A l l t h a t i s necessary i s t o w a i t t he delay pe r iod be fo re g i v i n g c o n t r o l
back t o t h e c a l l i n g task. No communications over t h e network w i l l be
requ i red i n t h i s case.

A s e l e c t i v e accept a l l ows a server task t o accept a c a l l t o one
e n t r y a r b i t r a r i l y from among a l i s t .

A t imed accept a l l ows a server t o w a i t o n l y a f i n i t e t ime f o r a task
t o c a l l one o f i t s e n t r i e s . A t t h e end o f t he t ime per iod, i f no task
has ca l l ed , t h e server task w i l l r e g a i n c o n t r o l , and w i l l execute a l t e r -
na te code.

A guarded accept a1 lows a server t o accept, i n a s e l e c t i v e accept,
one o f a l i s t o f e n t r i e s based on cond i t ions . The c o n d i t i o n s on accept-
i n g t h e va r ious e n t r i e s w i l l be checked a t run-time, and one of the
"open" e n t r i e s w i 1 1 be p icked.

The s e l e c t i v e accept, t he timed accept and t h e guarded accept can
a l l be managed on t h e server t a s k ' s processor, w i t h o u t any network com-
municat ion.

E.2.1.2

To a designer of a distributed computer system, these built-in con-
structs raise a number of issues:

0 Should one even allow the use of the Ada constructs when communi-
cating between two tasks on different computers? Specific commu-
nication packages could be provided instead, with pragmas used to
make the Ada constructs "erroneous". The assumption used here is
that the Ada constructs should be used so that the application
does not need to know where various tasks are.

0 What happens if a task does a timed entry call, but the computer
of the called task fails at some time before the rendezvous
occurs? It is possible to send enough messages to ensure that
the Ada semantics are followed, even in the case of failures, but
the time involved in transferring the messages is large. If the
rendezvous is extremely inefficient, it is not usable.

0 The rendezvous semantics specify that once the rendezvous has
started, it must complete before the calling task can continue.
What should happen if the processor running the server task fails
during the rendezvous?

The AIPS Project

For the Advanced Information Processing System (AIPS), reliability
is the most important issue, with efficiency also being a priority
issue. The NASA sponsored AIPS project will produce a flexible, fault
tolerant, distributed, real-time computer system. It has been designed
in terms of "building blocks", such that different applications, such as
deep space probe or a manned space station, could use the components.

The building blocks include the following (this is not an exhaustive
list. It only includes those blocks pertaining to intertask communi-
cat ion) :

Fault Tolerant Processors (FTPs). One FTP consists of two
(duplex) or three (triplex) microprocessors, each executing iden-
tical instructions. A triplex FTP has the ability to mask a sin-
gle fault from the rest of the system. A duplex FTP can determine
that a fault exists.

A fault tolerant Intercomputer' (IC) network. This network is a
triplicated circuit-switched nodal network with sufficient links
in each network to be able to reach all FTPs on the network after
experiencing a single fault in the network. Because the network
is triplicated, it is possible to have reliable communication
with multiple faults.

Systems software flexible enough to handle an arbitrary number of
FTPs connected to the network. The network management process
must be able to recognize faults in the network, and reconfigure

E.2.1.3

i t au tomat i ca l l y (and i n v i s i b l y t o a p p l i c a t i o n s processes). The
communications so f tware must a l l o w f o r any number o f FTPs t o com-
municate. Systems management sof tware must be ab le t o recon f ig -
u r e the system (f u n c t i o n a l l y "move" a group o f tasks from one FTP
t o another) i f extreme f a i l u r e s occur. Local FTP management
so f tware must be a b l e t o recon f igu re the FTP in t h e presence o f
processor f a i l u r e s (downmode t o a duplex from a t r i p l e x , for
exampl e) .

0 Local Operat ing System (OS) sof tware capable o f work ing a lone
(s implex) , i n duplex or i n t r i p l e x . The l o c a l OS i s concerned

w i t h the tasks on one FTP (the l o c a l scheduler, l oca l rendezvous
software, etc.) .

F a u l t T o l e r a n t D i s t r i b u t e d Ada

I n the absence o f f a u l t to lerance, i t i s d i f f i c u l t t o des ign a ren-
dezvous scheme between tasks on d i f f e r e n t computers w i thou t m u l t i p l e
t ransmiss ions over the network t o ensure processors remain a c t i v e
throughout the w a i t f o r t h e rendezvous. A message would need t o be sent
to request a rendezvous. An acknowledgement would be necessary w i t h i n
some t ime l i m i t i n t he case o f a timed o r s e l e c t i v e c a l l , t o make sure
t h e c a l l has been rece ived and pu t on the queue. Another message would
need t o be sent s t a t i n g t h a t t he e n t r y i s accept ing the c a l l . I f t h e
c a l l e r i s making a t imed c a l l , and the delay runs out be fo re t h i s mes-
sage i s received, a message cou ld be sent t o take the c a l l o f f t h e
queue. F i n a l l y , t h e r e s u l t s o f t he rendezvous can be sent back t o t h e
c a l l e r .

These messages make up a minimal se t o f t ransmiss ions over t h e ne t -
work a t t h e h ighes t l e v e l . There might be o ther t ransmiss ions a t a lower
l e v e l t o make c e r t a i n t h a t each complete message i s rece ived c o r r e c t l y .

I n the f a u l t t o l e r a n t A I P S system, t h e problem of unknown processor
f a i l u r e s does no t e x i s t . I f one o f t he processors i n an FTP f a i l s , t h e
f a u l t i s detected. I f p o s s i b l e (i n a t r i p l e x FTP, f o r example), proc-
ess ing cont inues normal ly . If i t i s n o t p o s s i b l e t o i s o l a t e the f a u l t ,
t he System manager w i l l r econ f igu re such t h a t f unc t i ons on the f a i l e d
FTP a r e run on a d i f f e r e n t FTP.

For t h i s type o f system, i t i s poss ib le t o des ign an e f f i c i e n t com-
mun ica t ion s e r v i c e t o implement the Ada rendezvous. Because the tasks
invo lved a r e v i r t u a l l y assured o f con t inu ing execut ion throughout t h e
rendezvous, 1 i t t l e e r r o r d e t e c t i o n needs t o be done i n t h e communi -
c a t i o n s so f tware o f t h e processor con ta in ing t h e c a l l i n g task.

For t h e case o f t he t imed rendezvous, w i t h a p o s i t i v e de lay value,
t h e des ign c a l l s f o r t h e opera t i ng system on the c a l l ed processor t o
t ime the wa i t , i f the de lay va lue i s l a rge r than the m in imum necessary
t o t r a n s m i t t he rendezvous request and rece ive a response back. I f t h e
e n t r y i s n o t accepted w i t h i n the g iven amount of time, a message w i l l be

E .2.1.4

sent back to the calling processor, and the calling task can execute
alternate code. The only messages that need to be sent would be the
initial message that the caller wants to communicate, and the final mes-
sage that the server is finished (for whatever reason) . If the delay
amount is smaller than the minimum needed to transfer messages, no com-
munication is needed. The calling task can be given control back after
the specified delay.

If the delay amount is zero or negative, or if it is a conditional
call, the messages still must be sent, and the rendezvous might occur.

The IC network services will keep track of whether the called task
is moved from one FTP to another. It is also possible that the network
will be reconfigured while the tasks are waiting to communicate. All of
this will be transparent to the application program.

The design for the intertask communication has been subdivided into
two parts, the local communication and the interprocessor communication.
The 1 oca 1 commun i cat i on cons i s ts of the "norma 1 I' rendezvous between two
colocated tasks. The interprocessor communication consists of doing the
same thing across an IC network.

The Ilglue" between these two services is cal led the "context manag-
er". Its function is to determine, for each attempted rendezvous,
whether the called entry is on the same processor as the calling task.
If it is, the local communication service is invoked. If the called
entry is on some other processor, the IC network service is invoked.

The design of the context manager includes a table of locations of
what are known as "migratables". As was mentioned above, when a fault
is detected, tasks can be transferred to another FTP. The tasks will be
grouped into large units. All the tasks within a migratable unit will
always be colocated; if they are moved, they will move as a block.
Therefore, the table of locations can be organized hierarchically. This
will allow a fast algorithm to be designed to determine in which FTP a
called task is being run.

The network services are organized into layers, as in the IS0 Open
Systems Interconnect model. The highest layer, the Application layer,
will provide the interface between the context managers on the FTPs, and
the IC network.

The interface between the context manager and the IC network has
been designed to be as similar as possible to the interface between the
context manager and the local communication service. This is not a
necessity, but since the context manager is a potential bottleneck,
there should be no translation of data to support different interfaces.

The Application layer is responsible for the Ada rendezvous seman-
tics. When a rendezvous is with a task on another FTP, this layer must
make sure the semantics are followed. With a fault tolerant system,
this layer i s fairly simple. A t system initialization, a table of task
to task communications is used to create logical connections between
each pair. When the rendezvous is actually requested by the caller,

E.2.1.5

this layer sends the input parameters, along with the timeout value, to
the Application layer on the server's FTP. The server's Application
layer calls the server with the appropriate delay (adjusted to take into
account communication delays). When the rendezvous is complete, the
Application layer returns output parameters. If an exception is raised
or the call times out, a message is sent back to the caller specifying
the problem. The Application layer on the caller's FTP then either
gives control back to the caller at the appropriate point or raises the
specified exception to the caller.

The other layers, except the lowest software layer (the Network
layer), are designed to support general network services (not just Ada
communication), and are not affected by the fault tolerance of the sys-
tem.

The Presentation layer is responsible for translating data when the
format on the receiver is different from that on the sender. The system
being bui 1 t (the proof of concept, or POC, system) has a1 1 processing
sites identical; therefore no transformation routines will be coded.

The Session layer is responsible for verifying the legitimacy of the
communication. It is possible for users (in some anticipated appl ica-
tions) to attempt to communicate with tasks to which they should not be
allowed access. A table of allowed communications will be checked for
all connections.

The Transport layer is responsible for determining the hardware des-
tination of the communication. It will have a table of locations for
the various tasks. If a communication destination is changed (if a task
is moved to another processor), this layer will be notified so that com-
munication can continue.

The Network layer is responsible for detecting and masking hardware
faults. On a triplex FTP, each processor is connected to one of the
three IC networks for transmission. Each processor has receivers all
three networks. Masking faults is not trivial when receiving messages
from processors which: are not fault tolerant, are duplex FTPs or are
triplex FTPs. It is, however, still much faster than detecting faults
through multiple acknowledgments at the Application layer. In fact, in
the usual case of no faults, a triplex FTP's Network layer needs to do
very little processing to obtain (reliable) data for each of the three
processors. It is only in the presence of faults that extra processing
needs to be done.

The Datalink layer is responsible for sending packets across the
network. It contends with the other FTPs for the network using a modi-
fied Laning poll which allows one triplex FTP to win the triplicated
network in the presence of a single fault. This protocol is somewhat
more complex than is necessary for a single network. This added com-
plexity, on the POC, adds a 10% overhead on each transmission. The
Datalink layer uses the HDLC protocol to transmit data over each net-
work .

E.2.1.6

The Hardware l aye r has two b i t - p r o t o c o l s : t he data b i t and the p o l l
b i t .

Conclusion

I n t h e presence o f f a u l t s on a system which i s no t f a u l t t o l e r a n t ,
i t i s d i f f i c u l t t o des ign an e f f i c i e n t communication system t o suppor t
the Ada rendezvous. For the f a u l t t o l e r a n t A I P S computer system, howev-
er, i t i s much eas ie r t o des ign the upper l aye rs o f the IS0 O S 1 communi-
ca t i ons model. The Network layer and the Da ta l i nk layer each have more
process ing t o do f o r each comnunication, but the amount o f process ing i s
small when there a r e no e r r o r s occur r ing , and the number o f communi-
ca t i ons can be reduced t o two a t t he A p p l i c a t i o n layer .

The r e s u l t i s an extremely r e l i a b l e , e f f i c i e n t communication system
a l l o w i n g Ada tasks t o communicate as i f they were on the same FTP.

D i s t r i b u t e d systems have many bene f i t s . The d i s t r i b u t i o n a l l ows the
system t o r u n i n p a r a l l e l , g i v i n g more throughput than i n a n o n d i s t r i b -
u ted system. The d i s t r i b u t i o n a l lows the system t o be reconf igured i n
the presence o f f a u l t s . The d i s t r i b u t i o n a l l ows the system t o be ab le
t o cont inue i n the presence o f damage, by p u t t i n g the va r ious computers
i n d i f f e r e n t p a r t s of t he veh ic le . Adding hardware f a u l t t o le rance com-
plements the d i s t r i b u t i o n by a l l o w i n g the sof tware t o i s o l a t e f a u l t s and
i n many cases t o mask t h e f a u l t . Th i s a l lows sof tware systems such as
the communication system t o be much s impler than i n systems which are
no t f a u l t t o l e r a n t .

E.2.1.7

